Reduced expression of A-type potassium channels in primary sensory neurons induces mechanical hypersensitivity.

نویسندگان

  • Li-Ying Chien
  • Jen-Kun Cheng
  • Dachen Chu
  • Chau-Fu Cheng
  • Meei-Ling Tsaur
چکیده

A-type K+ channels (A-channels) are crucial in controlling neuronal excitability, and their downregulation in pain-sensing neurons may increase pain sensation. To test this hypothesis, we first characterized the expression of two A-channels, Kv3.4 and Kv4.3, in rat dorsal root ganglion (DRG) neurons. Kv3.4 was expressed mainly in the nociceptive DRG neurons, in their somata, axons, and nerve terminals innervating the dorsal horn of spinal cord. In contrast, Kv4.3 appeared selectively in the somata of a subset of nonpeptidergic nociceptive DRG neurons. Most Kv4.3(+) DRG neurons also expressed Kv3.4. In a neuropathic pain model induced by spinal nerve ligation in rats, the protein levels of Kv3.4 and Kv4.3 in the DRG neurons were greatly reduced. After Kv3.4 or Kv4.3 expression in lumbar DRG neurons was suppressed by intrathecal injections of antisense oligodeoxynucleotides, mechanical but not thermal hypersensitivity developed. Together, our data suggest that reduced expression of A-channels in pain-sensing neurons may induce mechanical hypersensitivity, a major symptom of neuropathic pain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MicroRNA cluster miR-17-92 regulates multiple functionally related voltage-gated potassium channels in chronic neuropathic pain

miR-17-92 is a microRNA cluster with six distinct members. Here, we show that the miR-17-92 cluster and its individual members modulate chronic neuropathic pain. All cluster members are persistently upregulated in primary sensory neurons after nerve injury. Overexpression of miR-18a, miR-19a, miR-19b and miR-92a cluster members elicits mechanical allodynia in rats, while their blockade alleviat...

متن کامل

Upregulation of Ih expressed in IB4-negative Aδ nociceptive DRG neurons contributes to mechanical hypersensitivity associated with cervical radiculopathic pain

Cervical radiculopathy represents aberrant mechanical hypersensitivity. Primary sensory neuron's ability to sense mechanical force forms mechanotransduction. However, whether this property undergoes activity-dependent plastic changes and underlies mechanical hypersensitivity associated with cervical radiculopathic pain (CRP) is not clear. Here we show a new CRP model producing stable mechanical...

متن کامل

Brief Communications Loss of NR1 Subunit of NMDARs in Primary Sensory Neurons Leads to Hyperexcitability and Pain Hypersensitivity: Involvement of Ca -Activated Small Conductance Potassium Channels

It is well established that activation of NMDARs plays an essential role in spinal cord synaptic plasticity (i.e., central sensitization) and pain hypersensitivity after tissue injury. Despite prominent expression of NMDARs in DRG primary sensory neurons, the unique role of peripheral NMDARs in regulating intrinsic neuronal excitability and pain sensitivity is not well understood, in part due t...

متن کامل

T-type Ca2+ channels in thalamic sensory gating and affective Disorders

Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...

متن کامل

T-type Ca2+ channels in thalamic sensory gating and affective Disorders

Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 37  شماره 

صفحات  -

تاریخ انتشار 2007